An Overview of Electron Acceptors in Microbial Fuel Cells

نویسندگان

  • Deniz Ucar
  • Yifeng Zhang
  • Irini Angelidaki
چکیده

Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell

The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...

متن کامل

Comparison of Conduction Based and Mediator Based Models for Microbial Fuel Cells

Microbial fuel cells (MFCs) are processes used for simultanuous bioenergy capturing and waste treatment. In this study, a model for MFCs based upon a conduction mechanism for electron transfer is proposed, which integrates substrate utilization, current production and conduction and  microbial distribution and growth in batch flow mode. The outputs of the model and that of a mediator based mode...

متن کامل

Application of Bacterial Biocathodes in Microbial Fuel Cells

This review addresses the development and experimental progress of biocathodes in microbial fuel cells (MFCs). Conventional MFCs consist of biological anodes and abiotic cathodes. The abiotic cathode usually requires a catalyst or an electron mediator to achieve high electron transfer, increasing the cost and lowering the operational sustainability. Such disadvantages can be overcome by biocath...

متن کامل

Effect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell

Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...

متن کامل

Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017